
Making Art with
Generative Adversarial Networks

Loran Knol (s3182541)a Thijs Havinga (s2922924)a

Elisa Oostwal (s2468255) a Jeroen Overschie (s2995697) a

a University of Groningen, Nijenborgh 9 9747AG Groningen

Abstract

Generative Adversarial Networks (GANs) have proven themselves suitable for generating increas-
ingly realistic images. A number of recent developments have shown very promising results, such as
the progressively growing StyleGAN [8] that generates high resolution images of human faces. This
study aims to use those developments to generate paintings with the style and content of just one artist,
namely the Dutchman Vincent van Gogh. Although this artist has produced a large number of works,
the number of usable paintings was still too small for training GANs, so data augmentation had to
be performed. Two different architectures, DCGAN and StyleGAN, were trained on the augmented
data. Of the two, StyleGAN showed the most promising results.

1 Introduction
Generative Adversarial Networks are a relatively new type of technique for generating samples from a
learned distribution, in which two networks are simultaneously trained whilst competing against each
other. Applications for GAN’s are numerous, including image up-sampling [18], image generation, and
the recently quite popular ’deep fakes’ [11].

In this project1, we aim to train such a Generative Adversarial Network ourselves, with the purpose
of image generation, specifically. As the generation of human faces has been widely studied, we have
chosen a different topic, namely: the generation of paintings. While large datasets of paintings are avail-
able (e.g., [15]), we have opted to restrict ourselves to one artist, as we believe this will give a better
chance at producing realistic paintings. For this, we have chosen the Dutch artist Vincent van Gogh, who
is known for his unique style. The dataset is taken from [13] and consists of roughly 2 × 103 images.
The goal then becomes to generate paintings that resemble Van Gogh’s in terms of color usage and style.

1.1 Generative Adversarial Networks
Generative types of techniques have been existent in Machine Learning literature for some time - we
are able to draw samples from distributions using sampling techniques such as rejection sampling or
Markov Chain Monte Carlo techniques such as Gibbs sampling. However, we are often obliged to make
harsh assumptions about the data distribution at hand, obstructing the goal of learning to generate more
samples from a distribution automatically. Whereas discriminative models have seen massive successes
in the deep learning field [5], generative models enjoyed success a bit later.

Generative models preceding GANs include denoising autoencoders [10], Deep Boltzmann Ma-
chines [16] or Generative Stochastic Networks [1]. Whereas Deep Boltzmann Machines use an undi-
rected graphical model approach with latent variables, Generative Stochastic Networks do not require
a Machine Learning practitioner to define an explicit distribution, allowing training by using ordinary
back-propagation. Autoencoders also use a latent code using a deep network, forcing the model to com-
press the essential data distribution information into the bottleneck latent code layer. After the input

1Code and instructions available at: github.com/dunnkers/generative-adversarial-networks

https://github.com/dunnkers/generative-adversarial-networks


data is ’compressed’ into a smaller latent code layer, the autoencoder will decode the latent code, trying
to best reconstruct the original input.

Generative Adversarial Models [3] add another component: the adversary element. While the
generator model G tries to reconstruct a sample which best matches the original data distribution from
a latent code, the adversarial discriminative modelD tries to classify the generated output as real or fake
in a zero-sum game. In this way, two models are simultaneously trained with opposing goals: while the
target of G is to ‘fool’ the discriminator, D is optimized to classify whether a sample is made by G and
is in pG, or whether it came from the real data distribution x. Given some noise input z drawn from pz ,
G wants to minimize log(1−D(G(z))). The game D and G play can be formalized as

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

which means our objective/loss function is a combination of two models: one trying to minimize
some quantity whilst the other is trying to maximize it. Note that Equation 1 might be modified to
prevent gradient saturation: We might instead train G to maximize logD(G(z)). Though GANs can be
effectively trained using this formulation, we are at the risk that one model might excel over the other. In
this case training effectiveness will falter, causing the zero-sum game dynamics to fail. Contemporary
GANs often take extra measures to best synchronize D and G during training.

2 Dataset
The dataset used in our study is taken from [13]. This collection consists of approximately 2×103 paint-
ings by Van Gogh. Upon further inspection we find that the set contains both black-and-white sketches
as well as colored paintings. To aid the specialization of the network we opt to only use the colored
paintings for training, filtering the images based on high saturation. This reduces the number of images
to 744. This is a far too small number of samples, considering usually ten-thousands or even millions
of images are used in order to train a GAN, see e.g. [14]. We therefore resolve to data augmentation in
order to increase the number of images. The details of this are described in the following subsection.

2.1 Data augmentation
From our data set, we generate square patches as data samples for our GAN model. Through various
methods, we produce square pictures of a fixed size in pixels. This makes it easier to use the samples
in a model. Using various methods, we generate patches that are slightly different while retaining the
visual contents of the painting. The methods used, in order, are:

1. First, we adjust the brightness of the picture by -5%, 0% or 5%.

2. Then, we apply a shear operation on the picture in the x- and/or y-axis, or neither.

3. From the resulting pictures, we cut square patches that cover as much of the picture as possible.
This yields several possible square sub-images.

4. We then resize the square patches to a fixed size (for example, 212× 212).

5. To the resulting patch, some noise from a normal distribution (σ = 5 for integer pixel values) can
be added or not.

When combined these steps can produce a large number of slightly different patches of the same image.
To keep computation for our small project feasible, we cut off the process at 20,000 augmented samples,
which we empirically find to represent 162 different paintings.

3 Methods
To generate paintings with a GAN, two architectures have been selected: the relatively simple archi-
tecture of DCGAN [14], as well as the more advanced and recent architecture of StyleGAN [8], which
allows for an interesting comparison across network design complexity. Their mechanisms will be de-
scribed below. The Plug & Play architecture [12] was also considered, as it showed promising results
for several classes of images, indicating it had good generalized generative properties. This method
however relied on the caffe interface, which was not installed on the Peregrine cluster.



3.1 DCGAN
Described in [14], the DCGAN model refers simply to using deep convolutational networks for a GAN
architecture. As a first experiment to use our augmented data set, we create a design from scratch from
the two essential components in a GAN, the generator network G and the discriminator network D. We
also added an encoder component E later to better allow the generator to learn useful weights: Training
this additional encoder network with the generator network as an autoencoder based on the same data
set allows these networks to learn latent representations which the generator is able to translate to the
original paintings. By using a subset of 3 paintings from the original data set and applying our data
augmentation routine, we attain our final data set X for use in our DCGAN. Training the combination
ofE andG withX as both the input and the expected output, E learns to generate latent representations
h from samples from X , while G learns to transform h back to the original sample. At the same time, G
and D are trained with zero-sum adversarial optimizer functions as described in Section 1.1. As such,
D learns to distinguish output fromG produced with any random latent code from original data samples
from X , while G learns to generate pictures that look increasingly like the data samples.

3.2 StyleGAN

Figure 1: StyleGAN architecture [8]. A
latent code z is transformed through the
MLP f to w, which then controls the
AdaIN units within the generator g. Inde-
pendent noise images are injected before
every AdaIN unit. Every block of two
convolutional layers (and their respective
AdaIN units) is responsible for upsam-
pling the image from the previous block;
the resulting resolution is indicated in the
lower-right corner of the gray outlines.

Aside from DCGAN, a more recently developed GAN ar-
chitecture called StyleGAN [8] was also used. StyleGAN is
based on Progressive GAN [7], which, for both the genera-
tor and discriminator components, adds layers during train-
ing, yielding generated images of increasingly higher res-
olution. This progressive growing of image resolution is
beneficial for both speeding up and stabilizing the training
process. StyleGAN, in turn, modifies the architecture grown
by Progressive GAN in a number of ways.

The first modification concerns the latent code, z ∈ Z ,
which is not fed directly to the network but is first pre-
processed by an eight-layered fully connected (FC) multi-
layer perceptron (MLP) f to produce the intermediate latent
vector w ∈ W . Learned affine transformations A then con-
vert w to so-called styles y, which in turn are fed into adap-
tive instance-normalization (AdaIN) units. With this set-up,
the AdaIN units instance-normalize the feature maps xi of
a second input x, and ensure that the mean and variance
of every feature map xi becomes aligned with the style yi

[6, 8].
As a final modification, StyleGAN injects independent

images of Gaussian noise after every convolutional layer,
before the input is fed into the AdaIN units. The noise is
scaled per channel with a learned transformation B, and is
hypothesized to relieve the network from the burden of hav-
ing to generate its own pseudorandom numbers from the
network input to induce the necessary stochasticity at the
different resolution levels in the generated images [8]. See
Figure 1 for an overview of the StyleGAN architecture.

Because the training of StyleGAN takes a considerable
amount of time and because it was not certain whether the training method would converge within the
given time constraints, two separate approaches were taken. The first one takes a StyleGAN instance
from [8] that was fully trained on a high-quality faces dataset. With that fully trained network, training
is then continued on the augmented Van Gogh dataset. This means that the network does not grow in
resolution anymore, since the maximum resolution (1024x1024) has already been reached before the
Van Gogh training even commenced. The intuition behind this approach is that the faces generated
by the original StyleGAN instance hopefully already lie closer to the manifold of Van Gogh paintings.
The second approach is somewhat similar to the first one (use a pre-trained network instance), except



that all training parameters are reset to their starting values - including the resolution. This allows the
parameters of the low-resolution parts of the original, fully trained network to be retrained first, and
makes the network regrow in resolution.

The training hyperparameters were kept the same as in [8]. The network was trained with non-
saturating GAN loss, using the Adam optimizer [9] with α = 0.001, β1 = 0, and β2 = 0.99. However,
α increased with resolution size, and its values were 0.0015 for 1282, 0.002 for 2562, 0.003 for 5122 and
10242. The minibatch size also varied per resolution: 256 for 42 and 82, 128 for 162, 64 for 322, 32 for
642, 16 for 1282 and 8 for 2562, 5122, and 10242. Both networks were trained with two NVIDIA Tesla
K40 GPUs and a total of 24 cores from two Intel Xeon E5 2680v3 CPUs; each network received 24
hours of training. The results of both networks will be compared qualitatively, primarily based on how
much the authors think the generated images resemble Van Gogh paintings, and quantitatively, which
incorporates calculating the Fréchet Inception Distance (FID) [4] with an Inception-v3 network [17] that
has been trained on ImageNet [2].

4 Results
One instance of DCGAN and two instances of StyleGAN have been trained on the augmented Van Gogh
dataset. The results of these training runs will be described in the sub-sections below.

4.1 DCGAN
As an initial experiment with GANs, we designed a DCGAN as described in Section 3.1. We did
not evaluate the results of this DCGAN formally as we did with our main experiment concerning the
StyleGAN model. Some results produced by our DCGAN are shown in Figure 2. The pictures produced
by our DCGAN seem to contain areas showing near-perfect copies from one of the source paintings.

Figure 2: Example results from our DCGAN architecture. The left-most picture was generated with
a latent code produced by the encoder and thus represents one of the input samples. The remaining
pictures were generated from random latent codes.

4.2 StyleGAN
A sample of the images generated by the StyleGAN instance with constant network size (also referred
to as ‘training resumed’ from here) over the course of training is given in Figure 3 (left). Every row
corresponds to a random latent code, every column to the network state at the end of a training tick.
The number of images the network needs to be trained on before one tick has passed depends on the
training schedule; such a tick thus does not necessarily constitute one full pass through the training data
(i.e. a tick is not an epoch). The first column in the figure contains images generated by the original
StyleGAN instance from [8]. From the second column onward, the originally generated faces quickly
get a painting-like look and change into objects that Van Gogh would often paint, like flowers and (self-
)portraits. However, the very last column contains images that do not seem to match the painting style
and objects observed in the middle four columns.

Figure 3 (right) shows sampled images from the progressively growing StyleGAN instance (which
we will refer to as ‘training restarted’) over the course of training. Since this rendition of the network
starts off with generating lower-resolution images, it is faster to train, hence it can do more ticks over
the same training period; only a few ticks are showcased here for clarity. The first column again shows
the faces generated by the original network, while in the second column the resolution is reset to 8× 8



Figure 3: Generated images over the course of training the constant-sized (left) and progressively grown
(right) StyleGAN instance. Every row corresponds to a randomly generated latent code, every column
corresponds to a training tick.

0 1 2 3 4
Training tick

150

175

200

225

Fr
éc

he
t I

nc
ep

tio
n 

Di
st

an
ce FID - Training resumed

0 5 10 15 20 25 30
Training tick

300

350

400

450

Fr
éc

he
t I

nc
ep

tio
n 

Di
st

an
ce FID - Training restarted

Figure 4: FIDs of the constant-sized (left) and the progressively grown (right) StyleGAN instances. The
FID of the final state of the StyleGAN instance provided by [8], that would precede the FID of tick 0, is
not included in the figures to allow for easier comparisons.

and increases from there. As training progresses, the pixelated blobs of color slowly coalesce into
resemblances of flowers (first and second row) and landscapes (third row).

To also evaluate the progress of the StyleGAN instances quantitatively, the FID has been calculated
for all training ticks of both instances (see Figure 4). The StyleGAN instance for which training was
resumed shows a gently declining FID for the first three ticks, which then rises rapidly. Especially
the high FID in the last tick matches well with the last column of Figure 3 that has lost some of its
resemblance to Van Gogh paintings.

As for the StyleGAN instance whose training schedule was reset, FIDs are higher overall than the in-
stance for which the schedule was simply resumed, but the descend of the FID over training ticks is more
persistent. There seem to be two moments at which the FID takes a relatively large step downwards,
namely when the resolution is increased from 8× 8 to 16× 16 and from 16× 16 to 32× 32.

5 Conclusion
We have trained two types of GANs, DCGAN and StyleGAN, on a dataset of paintings by Van Gogh
with the aim of developing a network which is able to generate new paintings that have a style similar
to Van Gogh’s. Of the two, StyleGAN gave the most promising results. While the pretrained (constant-
sized) instance in general gave better results than the progressively grown network in terms of the FID,
we note that it appears to be prone to overfitting as the FID quickly grows after half a day of training.
This is also visible in the results: the paintings produced in later epochs look worse than those created
after half a day of training. The trend of the FID of the progressively grown StyleGAN on the other
hand steadily decreases throughout the course of training. It would have been worthwhile to train this
network for even longer to observe the minimal FID we could achieve, and compare this to the best fit
produced by the constant-sized StyleGAN instance.

While the final results do not portray humans or landscapes accurately, we are pleased with the
generated paintings, which definitely show similarity to Van Gogh’s work in terms of colour usage,
topics, and style.



References
[1] Yoshua Bengio, Eric Laufer, Guillaume Alain, and Jason Yosinski. Deep generative stochastic

networks trainable by backprop. In International Conference on Machine Learning, pages 226–
234. PMLR, 2014.

[2] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
248–255, 2009.

[3] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

[4] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, page
6629–6640, Red Hook, NY, USA, 2017. Curran Associates Inc.

[5] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, 29(6):82–97, 2012.

[6] X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 1510–1519,
2017.

[7] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for im-
proved quality, stability, and variation. In International Conference on Learning Representations,
2018.

[8] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative ad-
versarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[10] Xugang Lu, Yu Tsao, Shigeki Matsuda, and Chiori Hori. Speech enhancement based on deep
denoising autoencoder. In Interspeech, volume 2013, pages 436–440, 2013.

[11] Francesco Marra, Diego Gragnaniello, Davide Cozzolino, and Luisa Verdoliva. Detection of gan-
generated fake images over social networks. In 2018 IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR), pages 384–389. IEEE, 2018.

[12] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug play
generative networks: Conditional iterative generation of images in latent space, 2017.

[13] Kaggle: Van Gogh Paintings. https://www.kaggle.com/ipythonx/
van-gogh-paintings.

[14] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[15] Kaggle: Rijksmuseum. https://www.kaggle.com/lgmoneda/rijksmuseum.

[16] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial intelligence
and statistics, pages 448–455. PMLR, 2009.

[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture
for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2818–2826, 2016.

https://www.kaggle.com/ipythonx/van-gogh-paintings
https://www.kaggle.com/ipythonx/van-gogh-paintings
https://www.kaggle.com/lgmoneda/rijksmuseum


[18] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen
Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceed-
ings of the European Conference on Computer Vision (ECCV) Workshops, pages 0–0, 2018.


	Introduction
	Generative Adversarial Networks

	Dataset
	Data augmentation

	Methods
	DCGAN
	StyleGAN

	Results
	DCGAN
	StyleGAN

	Conclusion

